Telegram Group & Telegram Channel
The Surprising Effectiveness of Test-Time Training for Abstract Reasoning [2024] - так что, трансформеры работают на ARC?

Вы могли читать в соседних каналах о том, что LLM смогли приспособить для решения ARC - теста на способность распознавать и применять паттерны по нескольким обучающим примерам. Многие топовые решения основываются на поиске программ, тогда как применение GPT-4 / o1 даёт весьма скромный результат.

В данной работе авторы добавили в LLM-пайплайн несколько улучшений, позволивших получить результат в 62% - число, немного превышающее Avg. Human. Давайте разберёмся, как к этому пришли.

Изначальную LLama файнтюнят с помощью так называемого ReARC - датасету из искусственно сгенерированных задач. Чтобы их получить, был выписан набор элементарных трансформаций над плоскостями, из которых составлялись задачи и образцы. Из этого добра составлялись сэмплы для few-shot in-context обучения. Она решает 5 задач из 80.

Далее наступает Test-Time Training. Получив датасет из N тренировочных пар вход-выход, мы строим следующий датасет для In-Context Learning:

1) Берём каждый из N сэмплов и превращаем в таргет для in-context обучения, т.е. подаём на вход N-1 сэмплов с таргетами и предсказываем N-ный выход.
2) Обкладываем всё дата-аугментациями - симметрии, повороты, перемешивание тренировочных пар, скейлинг. Молимся, чтобы это не повлияло на задачу.
3) Дополнительно, обучаемся предсказывать таргеты со 2-го по N-1-й, это в статье называют Demonstration loss.

Обучаем LoRA (малопараметрический файнтюн) на каждую отдельную задачку в ARC на описанном выше датасете. Во время тестирования, применяем аугментации к задаче и потом ревёрсим обратно предсказанный ответ. Для выбора 2 финальных ответов проводятся выборы. Всё это в сумме даёт 29 задач из 80. Давайте глянем на Ablation:

1) Если обучать одну LoRA на все задачи - 22 / 80
2) Если не применять дата-аугментации - 13 / 80
3) Если вместо хитрого in-context test-time training просто файнтюнить на N сэмплах - 18 / 80
4) Если не файнтюнить модель на ReARC - 9 / 80
5) Если попросить GPT-4o сгенерировать ARC задачи для файнтюна и добавить к ReARC - 24 / 80 😁

Все эти замеры проводились на основе LLama-1B, Llama-8B даёт уже 36 из 80 - результат в 45%. А откуда же взялся результат в 62%? Для этого авторы совместили свою статью с другим подходом - статьёй BARC, про которую я расскажу в следующий раз. Применяя test-time training к нейросети из BARC, получается 53%. Чтобы получить 62%, нужно ансамблировать решение с синтезатором программ.

Интересно, какой был бы результат у всего этого на реальном тестовом ARC-датасете. Могу поверить, что какой-то близкий к этому числу, но теоретически возможны и лики. Всё-таки, авторы тюнили все детали своего подхода на наборе из 80 задач, кроме того, датасет для файтнюна (без которого это почти не работает) теоретически мог содержать операции, слишком близкие к public validation. Именно эти опасности и устраняются наличием полностью секретного тестового датасета.

О том, что нам этот результат даёт в более широком контексте. мы поговорим потом, а пока что просто порадуемся за команду.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/237
Create:
Last Update:

The Surprising Effectiveness of Test-Time Training for Abstract Reasoning [2024] - так что, трансформеры работают на ARC?

Вы могли читать в соседних каналах о том, что LLM смогли приспособить для решения ARC - теста на способность распознавать и применять паттерны по нескольким обучающим примерам. Многие топовые решения основываются на поиске программ, тогда как применение GPT-4 / o1 даёт весьма скромный результат.

В данной работе авторы добавили в LLM-пайплайн несколько улучшений, позволивших получить результат в 62% - число, немного превышающее Avg. Human. Давайте разберёмся, как к этому пришли.

Изначальную LLama файнтюнят с помощью так называемого ReARC - датасету из искусственно сгенерированных задач. Чтобы их получить, был выписан набор элементарных трансформаций над плоскостями, из которых составлялись задачи и образцы. Из этого добра составлялись сэмплы для few-shot in-context обучения. Она решает 5 задач из 80.

Далее наступает Test-Time Training. Получив датасет из N тренировочных пар вход-выход, мы строим следующий датасет для In-Context Learning:

1) Берём каждый из N сэмплов и превращаем в таргет для in-context обучения, т.е. подаём на вход N-1 сэмплов с таргетами и предсказываем N-ный выход.
2) Обкладываем всё дата-аугментациями - симметрии, повороты, перемешивание тренировочных пар, скейлинг. Молимся, чтобы это не повлияло на задачу.
3) Дополнительно, обучаемся предсказывать таргеты со 2-го по N-1-й, это в статье называют Demonstration loss.

Обучаем LoRA (малопараметрический файнтюн) на каждую отдельную задачку в ARC на описанном выше датасете. Во время тестирования, применяем аугментации к задаче и потом ревёрсим обратно предсказанный ответ. Для выбора 2 финальных ответов проводятся выборы. Всё это в сумме даёт 29 задач из 80. Давайте глянем на Ablation:

1) Если обучать одну LoRA на все задачи - 22 / 80
2) Если не применять дата-аугментации - 13 / 80
3) Если вместо хитрого in-context test-time training просто файнтюнить на N сэмплах - 18 / 80
4) Если не файнтюнить модель на ReARC - 9 / 80
5) Если попросить GPT-4o сгенерировать ARC задачи для файнтюна и добавить к ReARC - 24 / 80 😁

Все эти замеры проводились на основе LLama-1B, Llama-8B даёт уже 36 из 80 - результат в 45%. А откуда же взялся результат в 62%? Для этого авторы совместили свою статью с другим подходом - статьёй BARC, про которую я расскажу в следующий раз. Применяя test-time training к нейросети из BARC, получается 53%. Чтобы получить 62%, нужно ансамблировать решение с синтезатором программ.

Интересно, какой был бы результат у всего этого на реальном тестовом ARC-датасете. Могу поверить, что какой-то близкий к этому числу, но теоретически возможны и лики. Всё-таки, авторы тюнили все детали своего подхода на наборе из 80 задач, кроме того, датасет для файтнюна (без которого это почти не работает) теоретически мог содержать операции, слишком близкие к public validation. Именно эти опасности и устраняются наличием полностью секретного тестового датасета.

О том, что нам этот результат даёт в более широком контексте. мы поговорим потом, а пока что просто порадуемся за команду.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/237

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

Knowledge Accumulator from es


Telegram Knowledge Accumulator
FROM USA